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The measured change with temperature of spin-wave fre- 
quencies in metallic ferromagnets is proportional t o  T 5/2 . 
The usual Landau quasi-particle theory would yield an incor- 

rect T 3/2 term. Successful theories of the T 5'2 dependence 

have started out f rom hamiltonians which may be interpreted 

as containing dynamical quasi-particle interactions. In the 

present paper we supply the needed derivation of the dynami- 

cal form of the Landau quasi-particle theory for uniform 

systems and comment on its relation to the previous version 

of the theory. We show, in effect, that the derivations of 

the T 5/2 dependence by Izuyama and by Kawasaki are exact and 

thus complete the justification of Marshall's original ex- 

planations. The connection between the present form of $he 

theory and the original Landau form and its generalizations 

is briefly indicated. 
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I. INTRODUCTION 

Measurements of the temperature dependence of the 

spin-wave (S.Wl ) frequencies in ferromagnetic Nily2 and Per- 

malloy3 have yielded D = Do(l + E5/2T5/2) where D is the co- 

efficient of the quadratic term in the spin-wave dispersion 

relation u(q) = Dq + O ( q  ). It has been known for over a 

decade4 that the 

describing spin-wave excitations as well as electron-hole 

excitations in ferromagnetic metals. An explicit expression 

for the coefficient D was derived within that framework by 

Izuyama, Kim, and K ~ b o , ~  who obtained D = Do(l + E 3/2T3/2 + 
E2T + O(T7l2 ) ) .  These authors assumed a single conduction 

band and a simplified electron-electron interaction (S.I.) 

2 4 

itinerant electron model is capable of 

2 

+ + 
'INT = kktqu VIa k+q,a a kf-q,6'akfbfakU 

+ creates an electron in the Bloch state k with spin where a 

d. Use of the random phase approximation (R.P.A.) then yields 

their expression for D. This use of the R.P.A. is completely 

equivalent t o  the use of a simple self-consistent field theory, 

in this case Hartree-Fock, in which electrons interact only in 

a statistically averaged manner. It is the averaged interaction 

which specifically leads t o  the incorrect T 312 term in D. 

Landau quasi-particle picture of a ferromagnetic metal can be 

k, 6- 
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obtained d i r e c t l y  from t h e  usual Landau Fermi l i q u i d  theory  7 

simply by making the  proper  d i s t i n c t i o n  between t h e  two in-  

equiva len t  s p i n  systems, as was done by Abrikosov and 

Dzialoshinski .  Nevertheless, t h i s  far  more genera l  quasi-  

p a r t i c l e  theory  would s t i l l  y i e l d  t h e  i n c o r r e c t  T 3’2 term 

8 

because it, too, conta ins  only s t a t i s t i c a l l y  averaged i n t e r -  

ac t ions .  However, Marshall 9 has used phenomenological argu- 

ments t o  develop a spin-wave hamil tonian inc luding  i n t e r -  

a c t i o n s  between spin-waves which i n  t u r n  g ive  r i s e  t o  a T 512 

term i n  D. Izuyama and Kubo,I0 again using t h e  S . I .  obtained 
D = D o ( l  + E2T 2 + E512T5’2) by abandoning the  R.P.A. and 

employing i n s t e a d  a diagramatic form of p e r t u r b a t i o n  theory.  

Izuyamall and Kawasaki12 then showed that  a more s o p h i s t i c a t e d  

a p p l i c a t i o n  of the R.P.A. t o  t h e  S.I .  would g ive  a S.W.-S.W. 

i n t e r a c t i o n  of t h e  form assumed by Marshall, thereby lending 

support  to h i s  phenomenological approach. To exp la in  t h e  f a c t  

1-3 it  has been sug- t ha t  t he  T t e r m  has no t  been observed, 2 

ges ted  by Kawasaki tha t  E2 i s  s m a l l .  

The parameters en te r ing  t h e  hamil tonians 5 Y 9 Y 1 0  dis-  

cussed above are no t  w e l l  def ined by the var ious  authors ,  

al though Izuyama and Kubo8 do remark tha t  t h e i r  i n t e r a c t i o n  

cons tan t  U should be viewed as a p a r t i c l e - p a r t i c l e  t -matr ix .  

If t h e  parameters are the bare i n t e r a c t i o n s  and t h e  unrenor- 

malized s i n g l e  p a r t i c l e  energies ,  t hen  i t  i s  c l e a r  t ha t  a l l  

the large renormalizat ion processes,  c o r r e l a t i o n  e f f e c t s ,  e t c . ,  

must be taken i n t o  account before t h e  spin-wave theory  i s  set  
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up inasmuch as the spin-wave energies are small and their in- 

teractions weak. If, on the other hand, all renormalizations 

are already effected, as we believe they must be, the hamil- 

tonians describe dynamically interacting quasi-particles and 

have never, t o  our knowledge, been derived from first princi- 

ples. We thus arrive at the central concern of the present 

paper. In order to have an adequate description of the S.W.- 

S.W. interactions in ferromagnetic metals, one must have a 

hamiltonian for Landau quasi-particles containing fully 

dynamical interactions among the quasi-particles in contrast 
t o  the usual formulation 7 with statistically averaged inter- 

actions. We supply here in Sec. I1 the lacking derivation 

of such a fully dynamical quasi-particle hamiltonian by 

making what seems t o  us to be the minimal required generali- 

zation of Landau's original verbal derivation. 

By giving the earlier theories 599,'' a more rigorous 

basis in this way, we complete the demonstration of the essen- 

tial correctness of Marshall's original explanation, as dis- 

cussed in Sec. 111. We also discuss there the relationship of 

the present theory t o  the standard Landau theory' and suggest 

further generalizations thereof. 
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11. THE DYNAMICAL HAMILTONIAN 

We consider a uniform system of interacting spin- 
3 1/2 Fermions, realizations of  which might be jellium or He . 

The system is supposed initially at some time T1 in the 

remote past to move according t o  any convenient independent- 

particle hamiltonian, Ho, e.g., the free particle hamiltonian. 

H generates a complete s e t  of determinantal wave functions 

' kCo)  and energies E ( O )  which depend only on the set of occu- 

pation numbers of the single-particle plane-wave states 

the subscript k standing both for wave vector and spin, 

0 

The states ?(")({nk\) will fall into families of states each 

of which is characterized by special symmetry properties, 

e.g., total momentum, net magnetization, e t c .  Each of these 

families of states can be labelled by a subscript ~4 speci- 
fying such family properties, 9 ( 0 )  (ink3Q), &implying an 

appropriate restriction on the inkl. 

will be some ground state f(") ( inkIoCG). 

Within each family there 

We now suppose that the difference between Ho and 

the actual hamiltonian H is turned on adiabatically, i.e., 

extremely slowly, over the time interval T2-T1 which becomes 

infinite in the limit that T1 recedes t o  - 00.  At times 
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wi th in  (Tl,T2) t h e  motion of t h e  system i s  governed by the  

t i m e  dependent hamil tonian 

where g ( t )  v a r i e s  smoothly from 0 t o  1 i n  (T1,T2), 

Following t h e  s tandard arguments of a d i a b a t i c  pe r tu r -  

b a t i o n  theory,  l3 we introduce the  ins tan taneous  e i g e n s t a t e s ,  

and the  a d i a b a t i c  transforms of  the  i n i t i a l  e i g e n s t a t e s .  

The l a t t e r  w i l l ,  i n  general ,  be d i s t i n c t  from t h e  former and 

may be expanded i n  terms of them: 
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Substituting (6) into the Schr8dinger equation yields 

for a nondegenerate set of energies Em. 

the energy levels of our macroscopic system were nondegenerate, 

then ? would vanish since H vanishes in the adiabatic limit. 

The adiabatic transforms f({n& , t  ) of the independent-particle 

Clearly, if all of 

OC 

states f ( 0 )  ({nk3,) become identical to the instantaneous eigen- 

functions fm(t) at all times, including those times t>T2 for 

which H ( t )  becomes identical to H. Upon neglect of degeneracy, 

then, the exact states of the interacting system become identi- 

cal t o  the adiabatic transforms of the single particle states. 

This neglect of degeneracy is precisely correct only 

It is pos- for the ground state Eo of any given family ?E,. 
sible that the ground states of different families cross, but 

H has no matrix elements between them because H ( t )  preserves 

the symmetry properties on which the classification into 

families is based. 

eigenstate of H and further it is the ground state within the 

family of exact eigenstates of H of symmetry type d .  

We conclude that$({nk]).(G,T2) is an exact 

We are concerned here with systems for which the 

actual ground state is ferromagnetic with magnetization or, 

more precisely, total magnetic quantum number M, the symmetry 

type d in this case being equivalent to M. The ferromagnetic 

ground state-fMG is thus the adiabatic transform of the single 
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particle ground state fk:) of the family of single particle 

states having magnetization M , f i o ) ,  despite the fact that 

$&) need not be the absolute ground state of Ho, the initial 

hamiltonian. 

Because f M G  is the adiabatic transform of FA:), 
is labelled by precisely the same set of occupation numbers 

These occupation numbers correspond t o  

it 

two 

unequally filled Fermi spheres, one for each spin. The same 

remains true for the exact ground statefNG. Whereas the 

occupation numbers and Fermi spheres originally related to 

the individual particles, they now relate to the adiabatic 

transforms of the individual particles, the Landau quasi- 

particles. Thus the complete set of excited states *({nk) ) 

generated by the adiabatic transformation of the independent 

particle states provides the basis for a quasi-particle 

representation. This representation has the great advantage 

that the  basis functions are in one-to-one correspondence with 

the free-particle states and yet include the exact ground 

state. Thus all matrix elements between fdG and excited 

states vanish; however, the excited states mix among them- 

selves because the adiabatic theorem breaks down for them. 

This means that in general the quasi-particle representation 

of H has the property 



- 9 -  

where f does no t  vanish unless o r  l n t k f q  equals  

It i s  convenient a t  t h i s  po in t  t o  forget about t h e  

c l a s s i f i c a t i o n  of  states by symmetry types, t o  drop the index 

d ,  and t o  e l imina te  t h e  corresponding r e s t r i c t i o n  on t h e  

Ink]. The var ious  mat r ix  elements of H can be grouped 

according t o  the  number o f  changes of  occupation number in-  

volved, a kind of c l u s t e r  expansion: 

where 2p i s  t h e  number o f  changes of q u a s i - p a r t i c l e  occupa- 

t i o n  number involved i n  passing from Lni] toink] . Thus 

go vanishes  un le s s  Ink\ i s  i d e n t i c a l  t o  Ink{, gl vanishes 

unless they d i f f e r  i n  two members, g2 vanishes  unless  they 

d i f fe r  i n  f o u r  members, e t c .  I n  addi t ion ,  t he  g vanish i f  

e i t h e r  i n k t  o r  Ink\ equals  fnk3  

t h i s  last  r e s t r i c t i o n  e x p l i c i t  by the use of p r o j e c t i o n  

opera tor  /8 which vanish when a c t i n g  on t h e  ground s ta te  from 

e i t h e r  the l e f t  o r  t h e  r i g h t  

P 
w h e n r )  0. We can make 

C 
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where t h e  h 
ground s ta te  and a r e  defined for t h a t  case by cont inua t ion  

from low-lying exc i t ed  s t a t e s .  

no longer  a r e  r e s t r i c t e d  i n  t h e i r  a c t i o n  on t h e  /" 

The mat r ix  elements o f  i n  (11) may be  w r i t t e n  ex- 

p l i c i t l y  as 

i . e . ,  -9 = 1 - P  

decomposed i n t o  t h e  product 

where nkG i s  the  value of nk i n  t h e  ground s t a t e .  

Pk a r e  diagonal i n  t h e  nk ,n i  r e p r e s e n t a t i o n  

e n t  of one another;  it i s  convenient t o  reexpress  Pk as 

The mat r ices  

and hence independ- 

P k = 1 -  pk' ( 13b) 

Two equiva len t  expressions a r e  readi ly  obtained f o r  pk by 

d i r e c t  examination of t he  matr ix  J n k , n k G  L 2 , n i :  
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p, = 2k = rlk if n, G = 1, 

G = 1 - g, i f  nk = 0. * 

I n  (14)  a t i l d e  i n d i c a t e s  an opera tor  i n  second quant iza t ion ,  

i s  the  ord inary  number operator ,  and 2, i s  the number gk 
opera to r  which swit.ches from e l e c t r o n  t o  hole  c h a r a c t e r  below 

the  Fermi sur face .  Using (14a), f o r  example,@ may be w r i t -  

t e n  as 

One sees immediately, t h a t  any f a c t o r  i n  (15) conta in ing  an 

e x c i t e d  q u a s i - p a r t i c l e  s t a t e ,  9 
whereas if no exc i t ed  quas i -pa r t i c l e s  are p r e s e n t 4  i s  forced  

t o  zero.  

and t runca ted  a f te r  t h e  term o f  degree equal  t o  the  number of 

e x c i t e d  q u a s i - p a r t i c l e s  present .  

= 1, f o r c e s  C$ t o  uni ty ,  

No te  t h a t  $ can be expanded i n  powers of t h e 2  

Le t  us now introduce q u a s i - p a r t i c l e  c r e a t i o n  ( Ctk) 

and d e s t r u c t i o n  (C,) operators  as t h e  a d i a b a t i c  t ransforms 

of t he  p a r t i c l e  c r e a t i o n  (a,+) and d e s t r u c t i o n  (a,) opera tors ,  
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Because of the one-to-one correspondence of the a 's  and CIS, 

the Cts have the same properties in the quasi-particle basis 

as the a's do in the independent particle basis. 

operator represented by the matrix element go can depend only 

Thus, the 

on the quasi-particle number operators C t c k y  hl must contain 

products like Ctk C,,., k'ek, as well, and h2 must contain 

products like Ct C+ C C , with kl f k3,k4 or k2 f k3,k4 

Translation invariance requires that hl vanishes because of 

the restriction k # k1 and that kl + k2 = k 

kl % k3 k4 

+ k4 in h2. 3 
Putting all this together permits us to obtain an 

explicit expression for the hamiltonian in terms of the quasi- 

particle operators: 

where we have truncated the cluster expansion by keeping only 

terms for which/< - 2. In the spirit of this cluster approxi- 

mation, the justification for which is that H need be accurate 

only for low-lying states of excitation containing few excited 

quasi-particles, we may expand Hd(fCICkI) about the ground 

state energy in powers of the Jsk and terminate the expansion 
after second order: 
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The number-deviation operators  d,nk are def ined i n  ( 1 4 b ) .  

Eq. (18) may a l s o  be expressed i n  terms of  the 3 k through 

a modified ve r s ion  of t h e  i d e n t i t y  i m p l i c i t  i n  (14), 

S u b s t i t u t i n g  (18) i n t o  (17) and r ep lac ing  V ( k  kl;{Cl 01) by 

the e x t r a p o l a t i o n  t o  the  ground s t a t e  of i t s  eigenvalue 

V ( k , k f )  f o r  low-lying s t a t e s  g ives  t h e  des i r ed  hamil tonian 

q 

cl 

+ + Z V ( k , k f )  C+ k+q 'k1-q 'kf 'k3 k, k? 

The p r o j e c t i o n  opera tors  may enclose  t h e  term i n  &&&nkl 

because i t  automat ica l ly  a n n i h i l a t e s  t h e  ground s ta te .  
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111. DISCUSSION 

Eg. (21) gives a quasi-particle hamiltonian contain- 

ing dynamical interactions among the quasi-particles. It may 

be put into closer correspondence with the hamiltonian of the 

conventional form employed by Izuyama and by Kawasaki in their 

derivation of the T5'2 law by writing the &k out explicitly 

as c + ~  ck -inkG: 

where 
u = EG 

and the restrictions in the sums over k,kf and q 

(21) have been eliminated through the reordering 

c + ~ ~  ckf c + ~  ck and through the identification 

present in 

of 

Thus Vo(k,kf) and Vkl - k(k,kf) in (22) originate in a way for- 
mally different from the origin of V (k,k' ), q # o or k-kf, 
and the derivation of (22) in no way guarantees continuity, 

q 
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i.e., that 

should hold. However, if we suppose our system t o  be extensive, 

Eq. (26) must hold. The requirement o f  extensiveness is equiva- 

lent t o  requiring that the effect of a uniform distortion of 

the system be the same as the effeck o f  the limit of a slowly 

varying distortion. An elementary calculation done either on 

(21) or on (22) then shows that (26) is required. 

The Hamiltonian (22) differs in form from that em- 

ployed by Izuyama and by Kawasaki in the appearance of the 

projection operator pe 
results of their calculations because they study the equation 

of motion of spin-wave creation operators, This guarantees 

that in the course of the analysis H or a related operator is 

not applied directly to the gro-cmd state. The projection 

operators then either drop o u t  by reducing t o  ur-ity or can be 

This would in no way modify the final 

incorporated into the definition of the spin-wave operators. 

In this way we are led t o  a deeper understanding of the T 512 

term obtained by Izuyama and by Kawasaki as an essentially 

exact result. 

The relation of our hamiltonian in the form (21) 

t o  the conventional Landau theory7 is fairly straightforward. 

The € k in (21) are obviously identical t o  the single quasi- 

particle energies of Landau. On the other hand, the f k  k t  in 
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Eq. (21) are not identical to the interactions in Landau's 

t h e ~ r y , ~  nor are the V (k,k') identical to the interactions 

entering generalizations of Landau's theory t o  nonuniform 

systems. l4,I5 

the Landau theory from (21) simply by summing virtual ladders. 

The justification for this is that the density of real excited 

quasi-particles is low and the residual interaction V ( k , k t )  

is of finite range. The result is that the Landau interaction 

is the t-matrix corresponding to our V ( k , k ? ) .  The derivation 

evidently breaks down in principle when the t-matrix has poles 

on the real frequency axis associated with collective modes 

lying outside the free particle continuum, as occurs, for 

instance, in ferromagnetic metals at the spin-wave frequencies. 

Hence the present analysis affords a starting point for going 

beyond the Landau theory to obtain rigorously a hamiltonian 

containing, for example, quasi-particle-spin-wave interactions 

as well as spin-wave-spin-wave interactions. In the absence 

of collective modes, the transformation from the dynamical 

form (21) t o  the usual Landau form changes the basis wave func- 

tions from plane-wave states for the individual quasi-particles 

t o  scattering states, and similarly for the field operators. 

q 

Nevertheless, one can derive the usual form of 

(4 

We note in closing that our hamiltonian for dynamic- 

ally interacting quasi-particles has been derived for a uniform 

system whereas, of course, all real metals are nonuniform 

because of the electron-ion core interaction. In attempting 

to repeat the derivation of (21) for the nonuniform case, we 
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have found t h a t  the  a d i a b a t i c  t ransformation argument becomes 

so  i n t r i c a t e  as t o  l o s e  much o f  i t s  pedagogical value,  and w e  

have not  ye t  c a r r i e d  it  to completion. 
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